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Chapter I

INTRODUCTION

In his paper published in 1915, B. G. Galerkin [46] solved a num--
ber of problems on the equilibrium and stability of rods and plates by
a method which has become associated with his name, the Galerkin method;
Following this publication, a large amount of work has appeared in which
the method has been extensively applied to the practical solution of di-
verse ?roblems. The lack of proofs on convergence has never hindered its
application. The first substantiation of the Galerkin method was given
in 1940 by Repman [55] in application %o Ffedholm type integral equations,
and in the same year an analogous result for a certain special ordinary
fourth-order différential equation was obtained by Petrov [52]. In 1950
Mikhlin [51J obtained a fairly general sufficient condition for the con-
vergence of the Galerkin method and demonstrated the application of this
criterion to a number of problems which included the previously published

results.

Through the years many modifications to the so-called classical
Galerkin method have been suggested and used, in the vast majority of
cases without proof of convergence. Justification is usually made on the
basis of comparison of successive approximation or by comparison with ex-
‘periment or other approximate solutions. It is only in recent years (since
about 1957) that mathematicians (almost exclusively Russian) have begun to
use functional analysis to obtain proofs for approximation methods and, in

particular, the Galerkin and related methods.



The classical Galerkin method can briefly be described as follows:

Let A be a linear operator defined on a set DA which is dense

in some separable Hilbert space where a solution to the equation
Au - £f=0 (1.1)

is required. A set of linearly independent elements {@n} in DA are
selected and are called coordinate functioms. For each integer n, an
approximate solution of (1.1) is comstructed in the form of a linear com-
bination of the first n coordinate funetions with constant coefficients,
that is,
n

u (X) =1§‘1 a, ¢ (X) (1.2)
The coefficients a, are determined by replacing u by u, in (1.1)
and requiring the left-hand side of (1.1) to be orthogonal to the first

'n coordinate functions Py, +++; @ . This leads to the following system

of n linear equations in the n unknowns ayt

n -
k.Zl(Acpk) cpj) a'k = (fJ cpj) j = l, LR n (1'3)

Closely connected with the Galerkin method is the method of
weighted residuals. In this method, a second set of linearly indepen-
dent functions {Wh§ in DA’ called weight functions, is selected. The

nth approximate solution is again given by (1.2), but the coefficients

in this case are obtained as the solution of the following system:

n
E;ﬁ(Aqk, Wj)ak = (f, Wj) j=1, «e., n (1.4)



In connection with these and similar methods there are several
outstanding and very practical problems. It is desireable to have scme
definition of an optimal approximation to the exact solution using
methods of this typé. Once such a definition is given, the question of
selecting a set of optimal coordinate functions and a set of optimal
welght functions remains, In addition, the question of the convergence
of the approximate solutions to the exact solution is ever present.
Furthermore, from a practical point of view, it is important to develop
computational techniques which make efficient use of these methods as

well as to anticipate any computational problems involved.

The purpose here is to attack the above problem areas as well as
to pfesent a concise, lucid guide to efficient and economical application
of these methods and their modifications. In addition a rather complete
classification of Galerkin type methods is given with existing convergence
theorems. Finally, the last chapter includes a bibliography which repre-
sents a rather extensive search. Most of the references not included are

those which make a straight—forward application of a method.



Chapter IT

GENERAL APPROXIMATION THEORY

It is the purpose of this chapter to state the general definitions
used in the sequel and to present an outline of approximation theory [49]
from a somewhat general point of view which will include some later

methods as special cases,

A. General Definitions

A linear space over the field of real (complex) numbers is a set

V of elements called points or vectors satisfying the following axioms.

(1) To every pair, £ and g, of elements in V there corresponds
an element f + g called the sum of f and g. With respect to the

operation +, V is an abelian group; i.e.
(a) + is commutative, f + g =g+ f,
(b) + is associative, f + (g + h) = (f+ g) + h,

(c) there exists in V a unique element O such that

P+ 0=1 forevery £ in V, and

(d) for each f in V there corresponds a unique element

-f in V such that £ + (-f) = O.

(2) To every pair, a and £, where a is a real (complex) num-
ber and f is an element of V, there corresponds an element af in V,

called the product of o and £, such that

4



(a) scalar multiplication is associative, (of)f = a(Bf),
(b) 1f=f, Of = 0 for every f in V,

(¢) scalar multiplication is distributive with respect to

vector addition, af + g) = af + ag, and

(d) multiplication by vectors is distributive with respect

to scalar addition, (o + B)f = af + pf.

BElements f., ..., £ in V are linearly independent if the
1 ’ "n

relation

holds only for % = eee =@ = 0; otherwise fl, ooy fn are linearly

dependent. alfl + o0 t ahfn is called a linear combination of the

elements fl’ seey fn. A linear space V 1s n-dimensional if V con-

tains n linearly independent elements and if any set of n + 1 ele-
ments in linearly dependent. If for each positive integer n, V contains

n linearly independent elements, then V is infinite dimensional. A

non-empty subset M of V is a subspace if for every pair, fl and f2,
of elements of M, every linear combination, alfl + a2f2, is also con-

tained in M. If fl, saey fn are linearly independent in V, the space

of all linear combinations of fl, ooy fn is called the subspace spanned

by fy, ..., £ and is denoted by Sn(f) and £, ...

f is called a
n

basis for Sn(f).

A linear space V is an inner product space if for each pair of

elements, f and g, in V there is a real (complex) number (f, g),



called the inner (or scalar) product of f and g which satisfies the

following conditions:
(1) (g, £) = (f, g), the complex conjugate of (f, g),
(@) @qf) + ayf,, &) = oy (f;, 8) + ay(f,, &),
(3) (£, £) >0, and
(L) (£, £) = 0 if and only if £ = O.
The norm of the element £ in V, dénoted by W £ll, is defined by

hel = ‘/(f, )

The following propérties of the norm can be derived from the properties

of the inner product.
(1) Mot =lol izl
(2) Wz£, g)l < el Bell, the Cauchy inequality
(3) Nt + gl < lrll + Jgll, the triangle inequality
Two elements f and g are said to be orthogonal if
(£, g) = o

An element £ is normalized if

el = 1.



An inner product space V becomes a metric space if the distance
between two elements, f and g, in V, denoted by d(f, g) is defined

as

a(z, g) = lif - &ll.

From the properties of the norm, it can be shown that the function d

satisfies the usual conditions for a metric, i.e.

(1) a(f, g) = a(g, £)
(2) da(f, g) <a(f, n) + a(h, &)

(3) a(s, g) >0

(&%) a(f, g) = 0 if and only if f = g.

If V 1is a metric space and {f } ®  is a sequence of elements of
. =1

V, then f in V is said to be the limit of the sequence fn’ written

fn ~f or %;g“ fn = f, if

%&gbd(fn, £) = 0.

©0
. . " . . _
The sequence {fn} N is sald to comverge to f. This type of conver

gence is called strong convergence or norm convergence. The sequence

{fn} ®  is said to be a Cauchy (or fundamental) sequence, if for each
n=1

€ > 0 there is an integer Ne such that for all m, n > Ng



A metric space V is called complete if every Cauchy sequence converges

to an element of V.

A Hilbert space H 1is an infinite dimensional inner product space

which is a complete metric space with respect to the metric induced by the
inner product. H is a separable Hilbert space if H contains a sequence

of elements {fn} ®  such that S(f), the closure of S(f), that is, the
n=1

subspace spanned by the set {fn} along with limits of all Cauchy sequences
in S(f), dis the space H. Thus if H is a separable Hilbert space, each
element f of H can be approximated with arbitrarily prescribed accuracy

by a finite linear combination of the elements {fn} ®

n=1

The space Lz[a, b] of functions which are square integrablé (in
the Lebesque sense) on [a, b] is an example of a separable Hilbert space.
In this case, denoting by p the measure on [a, b], the inner product of

f and g in Lg[a, b] is defined as

b
(£, g) =f fadu
a

and the norm of £ thus becomes

POl

Nell= (g, ©) = [f: f2du:|

Norm convergence in L2 is called mean convergence,

Iet G be a subspace of a separable Hilbert space H. It can be

shown that to each element h in H there corresponds a unique element



g in G such that

in - gll =inf |}h - g'll.
g'eG

Furthermore, h - g 1is orthogonal to the subspace G, i.e., for each g’

in G

(h—g, g")=0,

and h can be represented in the form

h=g+ T

where geG and f 1is orthogonal to G. The element g is called the

orthogonal projection of ‘h on the subspace G.

A set M = {fn} ® which satisfies
n=1

O form#n
(1) (fﬁﬁ fn) {l for m = n, and
(2) (fn, fn) = lforn=1, 2, ...

is called an orthonormal system or sequence. From a given set of linearly

independent (finite or countable) set of elements, {gn}, it is possible

to construct an orthonormal set, {fn}, so that each fn is & linear com—
bination of ﬁhe g W= l, ..., n. One such method of orthonormalization
is the Gram-Schmidt process. An orthonormal (linearly independent) system
is sald complete if it is not contained in any larger orthonormal (linearly

independent) set.
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et D denote a subspace of the separable Hilbert space H. A
function T which relates to each element £ in D a particular ele—
ment Tf =g in H is called an operator in the space H with domain

D. The set

= {1geld ; Tf = g, feD
Ap = | » TeDj

is called the range of T. The domain of T is denoted by DT' The
operator which maps each element onto itself is called the identity

operator and is denoted by E.

If the operator T is one-to-one, that is, for each distinct pair,

fl and f2, in DT’ Tfl # Tf2 in AT’ then T has an inverse denoted

by T ' which maps A, omto D. Furthermore, 7l = £ if and only if

T = g.

Iet 8 and T Ye two operators such that ATFDS is not empty.

Then the Eroduct of S and T is defined as
aTf = S(Tf).

An operator T is linear if for each pair £ and g in D, and

scalars o and B
T(af + Bg) = oIf + BTg.
The norm of an operator T, demoted by |l Tl, is defined as

el = sup Hleoedl

as f ranges over Dy and ||f|| <.
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An operator T is bounded if ||T || is finite.

The operator T 1is said to be continuous at a point fo in DT
_if for each € > o ‘there exists a & = 8(e) > o such that for each f

in DT with

| £ - fon <8 we have || Tf - Tfoll <e.

If T 1s an arbitrary bounded linear operator on H, there exists
a unique bounded linear operator T* such that WT Il = I™*ll and for

each f and g in H
(£, Tg) = (T*f, g).

The operator T* 1s called the adjoint of T. It is easy to see that

*
(T*) =T, If T* =T, then T is said to be self-adjoint.

A self-adjoint operator T is defined to be positive if for each
f in DT

(£, £) > 0.

If (Tf, £) = 0 implies f = 0, then T is said to be positive definite.

The energy product of two elements f and g in DT is (Tf, g), and

the energy norm, denoted by "f"T is

Wehy = V(Ts, ).

A sequence of elements {fn} ® in DT is said to converge in energy
n=1
to the element £ in D, if

T

lim an - f“T = Q.
n—oo
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It can be shown that energy convergence implies mean convergence [38].

A linear operator T is said to be gymmetric if DT is dense in

H and for £ and g in DT

(Tf) g) = (f: Tg).

It is easily verified that a symmetric operator T such that DT =H is

self-adjoint.

A set C 1is comgact if every infinite sequence in C contalins a

convergent subsequence. A linear operator T such that DT = H is said

to be completely continuous if it maps each bounded set into a set which

is compact.

Iet H %be a separable Hilbert space and G be a subspace of H

such that each element h in H has a unique representation in the form
h=g+ T

where g 1is the orthogonal projection of h on G. The operator which
maps h into its orthogonal projection g on G 1is called the ortho-

gonal projection operator and is denoted by PG or simply P if the sub-

space G has been previously specified. An orthogonal projection operator

is linear, bounded, and [P ]| = 1. In addition, P2 =P and P¥ = P.

A complex number A 1is called an eigenvalue of the linear operator

T if there exists a element f # O such that

Tf = AT,
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The vector f 1is called an eigenvector belonging to the eigenvalue .

A subspace G of H is called an invariant subspace of the oper-

ator T 1if every element of DT in G is mapped by the operator T

into an element also in G.

Given a complete orthonormal set {fn} in S(f) each function

g has the unique representation

©0
g =Z (g: fi) fi
‘=

and this is called the Fourier series of g relative to the set {fnf.

The orthogonal projection of g on Sn(f) can be written

n
> (g, £,) £,
i=1 o

B. Theorems
Let X be a complete subspace of the normed space X and P de-

note a projection from X onto X, i. e.
P(X) = X; © = p.
We first consider an equation of the form

Kx =x - \Bx =y (2.1)

in the space X, called the exact equation, and an equation

Kx

I

¥ - MEX = Py . (2.2)

in i; called the approximate equation. The operators H and H are

linear.
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In order to make the rather abstract setting more easily understood,

we will take an example to illustrate the theory as we proceed.

Let {¢;} be an orthonormel sequence in IL,. Let X = S(@) and
X = Sn(m). Then the operator P could be defined as the orthogonal

projection from X onto X.

The - following conditions will play an important role in the sequel.

I. For every x in X

llprx - ERI< q I ).

II. For every x ‘in X there is an ¥ in X such that

NEx - =l <0y = Il

ITI. For each y in X there is a § in X such that

Ny -yl <n, v l-
IV. If a solution exists for equation (2.2) then the solution is unigue.

In our example, condition I could be satisfied if H=PH. In
such case 7 = 0 1is an acceptable choice. Furthermore, conditions II
and III would be satisfied provided n 1is sufficiently large since the

sequence {mi} is complete,
Condition IV will always hold for completely continuous operators.

We hope to be able to solve the approximate equation and have an
approximation to the exact equation. Suppose that we have a sequence of

approximate equations and solutions obtained from these. Then the space
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i; together with the operators H and P and the constants in condi-
tions I, II, and III depend on an index n, which we shall omit for the

sake of simplicity.

The obvious question is whether or not such a sequence of approxi-

mations converges to the exact solution.

Theorem 2.1. If the following conditions are sabisfied:
(1) X has a linear inverse
(2) X satisfies IV for each n
(3) I, II, and III hold for each n

(4) 1imn = 0; Mm nllP Il = 0; 1lim n, I =0
n-—>o0 n—o n—co

~

then the approximate equations are soluable for sufficiently large n and
lim f|x - Enll = 0.
n—>.00

These sufficient conditions for convergence can be phrased in

another form when H = PH.
Theorem 2.2. If H = PH and the following conditions are satisfied:
(1) X is complete
(2) 1im Px=x
n->co

(3) H is completely continuous

(4) » is not the reciprocal of an eigenvalue of H
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then the approximate solutions converge to the exact solution.

Corollary: The characteristic values of H are limits of sequences of

characteristic values of ﬁ;.

In our example, X is complete and the orthogonal projectors con-

verge to the identity so (1) and (2) of Theorem 2.2 are satisfied.

We shall now consider equations in which the left-hand side does
not contain the identity operation explicitly and moreover represents an
operation from the original space not into itself but into another normed
space. In spite of these differences as cémpared with the equations dis-

cussed above, these are reducible to the former type.

We suppose that X and Y are normed spaces, from each of which
complete subspaces X and Y, respectively, have been chosen. We suppose

that ¥ 1is a linear operator projecting Y onto Y.
As before, we consider two equations, the exact
Kx=0x - Mx =y, (2.3)
and the corresponding approximate equation

Kix

X - \TX = Fy, - (2.14)

Here, G and T (and Kl) are linear operators mapping X into Y while
T (and iﬁ) are linear operators from X into Y. We further assume that
G has a linear inverse and establishes a one-to-one correspondence be-

tween X and Y. In this setting conditions I through III above become:
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Ib. For every x in X

lrrx - Txl< pll x|

ITb. For every x in X there isa § in Y such that

I - T <uy x|

ITTb. For each ¥y in Y there is an element 51 in Y such that

Iy = T3l Svo 1910

Writing, under the above assumptions, (2.1) and (2.2) as

Kx G-]'le = x - MG TTx = G’lyl (2.5)

il

k=

l

¢ K x =% - 2T = oty . (2.6)
1 71 1
it can be shown that conditions I through III hold.
The preceding theorems can be restated in this setting.
Theorem 2.%. If the following conditions are satisfied:
(1) K, bas a linear inverse,
(2) fi satisfies IV for each n,
(3) TIb, ITb, IIIb are satisfied for each n,
(#) limp =0; limp NFH=0; Lim p, ¥ = o,
then the approximate equations are soluable for sufficiently large n,

and the sequence of approximate solutions converges to the exact solu-

tion.
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As before when the approximate equation is obtained by projection

of the exact equation, the theorem can be formulated differently.
Theorem 2.4, If T = FT and the following conditions are satisfied:
(1) Y is complete
(2) 1im Fx=x

n~> oo

(3) ¢ is completely continuous
-1 .
(&) K, "~ exists

then the approximate equations are soluable for sufficiently large n,

and the approximate solutions converge to the exact solution.

C. Summary

From the above we conclude that when presented an operator equa-
tion to solve, we must decide into which general category it falls. That
is, decide whether it is of type 1 with the identity explicit or type 2.
Then several other definitions must be made. There is a great deal of
flexibility in these, but certain choices are sometimes more judicious
than others. There is no general rule since the choice is influenced by
the character of the operators as well as the boundary conditions and

the particular method of solution employed.

The following is an outline of the situation.
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Type 1. x - AMx =y
Define: (1) the space X and the subspace iﬁ
(2) +the projection P,

(3) the operator ﬁg

At this point the approximate equation is determined, and it may be
possible to check conditions I through IV. It must then be determined
if either Theorem 2.1 or Theorem 2.2 applies to prove that the approxi-

mate solutions converge.

Regarding type 2, it should be pointed out that the first step
here is to write the given equation in the proper form. There may be
more than one way to do this, and one version may be more amenable than
another. Again, there 1s no general principle. However, it must be

kept in mind that G must be one-to-one and have a linear inverse.

Type 2. Gx - A\ Ix =y
Define: (1) the spaces X, X, Y and Y
(2) the projection F

(3) the operator T

As above the approximate equation is now determined and, perhaps, con-
dibion Ib through IIIb, and IV can be checked. Also it remains to

determine if the theorems apply to prove convergence.

The above procedures are exhibited in the examples.



Chapter III

CLASSIFICATION OF METHODS OF THE GALERKIN TYPE

Since Galerkin first used his technique to solve a problem in
mechanics, a vast number of modifications have been suggested. The
purpose of this section is to classify these suggested modifications
and. to outline their applicationQ Certain of these fall into the gen-
eral approximation theory considered in the last chapter. Some of them
have been rather widely used but are without convergence proofs. These

will be carefully noted along with the limitations of the other methods.

We first state the definitions applicable to this chapter, then
classify and describe the methods and in the final section summarize

the results and draw certain conclusions.
The methods all involve the solution of the equation
L(u) = 0 (3.1)

where u is defined on a domain D bounded by C, L is an operator in

a separable Hilbert space and on C
Bi(u) = 845 i=1, ..., p (3.2)

are the appropriate number of boundary conditions. It should be noted
here, and will be pointed out below, that the methods discussed are pri-
marily designed for boundary valve problems and certain careful modifica-
tions must be made to even apply any of these methods to initial value or

other types of problems. The methods to be described involve the selection

20
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of two linearly independent sets of functions: the first called co-

ordinate functions {vi} * and the second called weight functions

i=1
[es]
{Wi} :
i=1

i=

An nth approximation toc the solution is obtained in the form

u = f(cl, ees Cp Vo "‘Vh) (3.3)

where f 1is a function of some selected form (e.g., a linear combination)
and the functions (perhaps constants) ey are determined by one of the

procedures described below.

A, Definitions

Definition %.l: The operator residual, denoted by RL(un), is the

result of operating by L on u . Thus RL(un) = L(un).

Definition 3.2: The component boundary residuals, denoted by

Ry (un), are the result of substituting u,  for u in the boundary
i

conditions. Thus RB.(un) = Bi(un) - gy 1=1, «ou, Do
i

Definition 3.3: The boundary residual, denoted by RB(un), is
the sum of the absolute values of the component boundary residuals.

Thus R’B(un) =Zp: RB.(un)\'

1=1

Definition 3.4: A method of solution is called an interior method

provided that the coordinate functions are chosen to satisfy the boundary
conditions and the functions {ci} are determined by requiring that the
operator residual be orthogonal to the first n weight functions through-

out the region D. That is
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Ry (w), wj) =0 J=1, seu, n. (3.4)

Definition 3.5: A method of solution is called a boundary method

provided that the coordinate functions are chosen to satisfy the operator
equation, and the functions {ci} are determined by requiring that the
boundary residuval be orthogonal to the first n weight functions on the

boundary C. That is

(Ry(a), W) =0 3=1, oo, m O (3.5)

Definition 3.6: A method of solution is called a mixed method

if it is neilther interior nor boundary.

It should be noted that generally in the mixed method described
above both the boundary and operator residuals must be considered, If
we require that both the boundary residual and the operator residual be
orthogonal to the first n weight functionms, we will obtain 2n equa-
tions for the n unknowns {ci}. It has been suggested that such a

situation be remedied by:

(1) Discarding some of the equations; the choice is arbitrary as long
as the equations are independent although consideration is given to those
characteristics of the problem which are most important [29]. Exactly

how such a decision should be made is not stated.

n
-(2) Using 2, instead of n, weight functions (n must, of course, be

even) [13].

(3) Adding the residuals and making this sum orthogonal to the first =n

weight functions [36].
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None of these suggestions are proved to be valid and are merely
ways of obtaining n equations in n unknowns. The sole motivation

for the rather arbitrary choice seems to be a matter of taste.

B, ©Specific Methods

There are four fundamental classifications of methods of the

Galerkin type.

I. General: This is simply to solve the system (3.4) using the
form (3.3) as it stands. Unfortunately, it can be quite difficult to
achieve such a solution, and a certain amount of ingenuity may be re-
guired to select an appropriate form for £, to satisfy the boundary

conditions, etc.

IT. Shulesko Technigue: This is a mixed method wherein p + 1

o
2

sets of coordinate functions are chosen, {Vi} *®  and {tk'}
i=1 i=1

k=1, ... p. The nth approximation is sought in the form

P n n
“n =k§1 iz=l it iz=l P11

Furthermore two complete sets of weight functions {sj}, {wj} are

selected. The {aik} are then determined by meking the component boundary
residuals orthogonal to the first n weight functions Sj‘ The bi
are determined by making the operator residual orthogonal to the first

n weight functions Wy [h1].

oo}

ITI. Method of Weighted Residuals: A set of functions {Vi}
i=1

is chosen to satisfy the boundary conditions. The nth approximation



2k
_ n
takes the form un;=§: civ{; and the {ci} are determined by making the
i=1

operator residual orthogonal to the first n of any set of linearly

independent weight functions {Wj} ®[48].
J=1

IV. Classical Galerkin: A set of coordinate functions of the

required number of variables, linearly independent and complete, is
chosen to satisfy the boundary conditions. The nth approximation has

n
the form un==§: C,Vs where the {ci} are constants determined by making
i=1 ‘

the operator residual orthogonal to the set of coordinate functions.

Thus the coordinate functions themselves become the weight functions

[381.

Notice that IT includes IIT in the case in which {tki} = {Vi}
and satisfy the boundary conditions; it includes IV.in the case in which
{tki} = {vi} and satisfy the boundary conditions and<{wj} = {vi}. In

addition, IIT includes IV when {vi} =] {Wj}'

There are several slight modifications and variations on the
above theme. These depend on the specific éharacteristics of the prob-
lem to be solved; for example, whether or not the operator is linear,
the boundary conditions homogeneous, etc. Some of these are indicated

below.

(1) Ames Method
When the problem is an initial value problem, where the range of t is

the non-negative real nﬁmbers, the nﬁh approximation is taken in the
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form un.==2: v, where the coordinate functions satisfy the initiasl

conditions. The operator residual is then made orthogonal to a set of
weight functions (according to III or IV) on the interval [0, T] where
T 'is regarded as the time when steady state is achieved. Hopefully, T
may be estimated from the physical nature of the problem [31]. See

Chapter V for a further discussion of this.

(2) Bickley Method

When a linear problem involves the variables x and %, the nJCh approxi-
n

mation may be taken in the form w =:E: ci(t)vi(x). Thus the members of
i=1

{ci(t)} are unknown functions of t and may be determined from the condi-

tions of III or IV [18].

(3) Crandall Method

When L is a partial differential operator, it is possible to reduce the
problem to an ordinary differential system if we are given in addition to

(3.1) and (3.2) an appropriate number of initial conditions:

Ik(u) = hy k=1, ..., r (3.6)

n
The n°P approximation is taken in the form w =:z: ci(t)vi where
1=1

{v.} s linearly independent, complete, and satisfies the boundary
3 Y
i=

conditions but not the initial conditions or the differential equation.

Thus, in addition to the operator residual, we define an initial residual

to be:
n

Rp(u,) =D, \hk - | 2 Ci(.o)vi .
=1

i=1
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Making these residuals orthogonal to the first n of a complete set of

weight functions {Wj} ® , we obtain the two systems of equations:
J=1

(2) _4 RI(un)wde =0

and

(b)f RL(un)wdi =0
D

for =1, ..., n. From equation (b) we get a system of ordinary dif-
ferential equations in the {ci(t)}, and equation (a) will specify initial
conditions for them, allowing solution either exactly or approximately

[34].

(4) Generalized Moments Method

W. V. Petryshyn [55] has suggested a method for the solution of the eigen-

value problem
T - ASu=0 (3.7)

where the operators T and S are linear, unbounded and nonsymmetric,
and T is K-positive definite. An operator is said to be K-positive

definite provided there is a closeable operator K with D, > D, mapping

X T

DT onto a dense subset of H and two positive constants oy and %y
such that

(Tu, Ku) > Hu “2 ueD,

’ =% T
and
2
Ixul © < iy, (Tu, Ku) u€Dy,.
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An operator X is closeable if {un} converging to zero and {Khn} con-

verging to f imply f 1is zero. He also suggestéd the method for
Au+ Bu = f (3.8)

where A 1s K-positive definite, and B is a linear unbounded operator
[54]. The method is the method of weighted residuals where the weight
functions are chosen ag the K-images of the coordinate functions. The
author points out that if T (or A) is self-adjoint, the method reduces

to the classical Galerkin method (i.e., K = I).

Certain of the above are special caées of the general theory of
the preceding chapter. The classical Galerkin method is a special case
in the following Way. If the operator I has the form of type 1, the
space X 1is taken as the completion of the subspace of L2 spanned by
coordinate functions and the subspace X as the subspace spanned by the
first n coordinate functions. Further, P is taken as the orthogonal
projection operator from X onto X and H is defined as PH. The

approximate equation then gives, on taking the inner product with @j’
(X - M %, cpj) = (Py, cpj) j=1, ... n.

Simplifying, using the self-adjointness of P and the fact that

P(q>j) =@, j <n, gives
(EZ) CPj) - A (E X, CPJ) = (YJ CPJ) jg=1, ... n (5-6)

which is exactly the Galerkin system of equations. Since



28

equation (3.6) gives n equations in the n unknowns a,.

If the operator is of type 2, then X and X are taken as
above, Further, Y and Y are taken as G(X) and G(X), respectively.
The operator F is taken as the orthogonal projection from Y onto Y.

Then the approximate equation is
GX - AFIX = Fy.
As above this gives rise to the system
. . th . .
This system determines the n = approximation.

The method of weighted residuals can also be considered as a
special case of the general theory under certain conditions. In this
method the same approximate equations as above are employed, bub the
inner products are taken with weight functions {Wi} other than the co-

ordinate functions. This gives
(X - M X, Wj) = (Py, wj) j=1, ... n
and
(ex, Wj) - AMPTXR, Wj) = (Fy, Wj) j=1, ... n

for types 1 and 2, respectively. The self-adjointness of P (or F)

can be invoked to write

(P.Y: WJ) = (y: PWJ)
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However, unless wj is in the span of the first n coordinate func-
tions, P Wj # Wj. Therefore, it can be concluded that the method of
weighted residuals is a special case of the general theory only when the
span of the first n coordinate functions includes the first n weight

functions. (See in this connection Theorem 4.5 of Chapter IV.)

This same problem arises when the coordinate functions are not
orthogonal. In this case the projection used is not orthogonal and
hence not self-adjoint. That is, the projection is defined as trunca-
tion of the expansion in terms of the coordinate functions at n ‘terms.
This means, in particular, that the right hand side of the Galerkin
systém should be (P y, mj) and not (y, mj) to be a special case of the
general theory. It does, indeed, seem clear that a convergence proof
using (P y, @j) would imply convergence using the right hand side (y, @j)
since Py converges to y. However, the simple way out of this apparent

dilemma sbout convergence as well as accuracy of corresponding approxima-

tions is to utilize the following theorem.
Theorem 3.1l: If the coordinate functions {@i} for the linear problem
Ay = T

are linearly independent but not orthogonal in L2 then the nth approxi-
, , *
mation is the same as the n®B approximation using the sequence {Cpi} ob-

tained by orthonormalization of {mi}.

Proof: Let G De the nonsingular n X n matrix which takes ¢ to ¥,

l.e.,
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— * —
¥ = P = Gp = %
y .
P Pn
et P = (a:.L ) be the n X n matrix where a; = (A@i, $j) and Q = (bi )
J J J
* *
be the n X n matrix where b, = (Acpi ) Py ). In addition, let
J
= ¥ ok =
y,=¢c9 and v, = d o = dco

where ¢ = (cl, cony Cn) and d = (dl, cees dn). The Galerkin systems

are then

—_— — *
‘Pc! =R = (f’ (Pl) ' =8 = (f) q)]_ )

(%, 9,) (£, 9,

where prime denotes transpose.

If it can be shown that c = dG, the proof will be complete. We

have

L(p*) = GL(P)
so that

L{g*) a*' = GL(P)p*' = GL(P)P'G'.
Integrating the extremes of this gives

Q = GPG!?
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S0

P=G Q3" .
Thus

¢! = PR = (¢'Q”"¢) (¢78) = G'Q‘ls = g'q!
and taking transposes gives the result.

The above theorem does answer the dilemma because orthonormal coor-

dinate functions {@i*} gives

(Pf: q)i*) = (f) P‘Pi*) = (fJ (Pi*)

since P 1is an orthogonal projection, is self-adjoint and is, of course,
the identity on its range. This means that the "correct" right hand side
is used in the Galerkin system when the coordinate functions are ortho-
gonal, However, by the theorem, the spproximate solution with nonortho-
gonal linearly independent functions is the same even though the right

hand side in this system is (£, @i).

C. Summary
The number of convergence proofs for the above methods is quite
small, As noted above 1n certain cases a few techniques are covered by

the earlier theorems from the general theory.

The motivation for accepting these methods probably stems from the

following well kunown theorem.

Theorem 3.2. An orthogonal sequence of functions is complete if and only

if the only function orthogonal to each member of the sequence is equivalent
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to zero. This theorem implies that if

(L(U.n), (PJ) =0

for all J then
L(un) =0

i.e., U, is a solution, whenever {¢j§ is a complete orthogonal sequence.
Of course, only n values of j are used so that u,  is an "approximate"-
solution. In practice and in fact in most of the examples in the litera-
ture, the coordinate functions are neither orthogonal nor camplete, Hence

the appeal of this argument wanes.

The following is a summary of essentially all of the theorems proved

in regard to convergence of the above methods.

Theorem 3.%. If the sequence of coordinate functions is complete, the
classical Galerkin method converges in the mean to the exact solution of

a Fredholm integral equation [38].
Theorem 3.4. Suppose Au = f has a unique solution and can be written as
Au+XKu=1*
o

where Ao is symmetric and positive-bounded-below in a Hilbert space H.
Then if A.o-l K is completely continuous, the classical Galerkin method
with a complete sequence of coordinate funétions converges in energy to

the exact solution. A similar result holds for the eigenvalue problem [38].

As an application of Theorem 3.4 the following result can be proven.
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Theorem 3.5. Consider the problem
(-1)® a®) gy =g

u(a) =ut(a) = ... = u(m_l) (a) ; 0

ab) = u'(b) = ... = @) ) =0

where K 1is a linear differential operator of order 2m-l such that
all coefficients are sufficiently differentiable. Suppose there is a
unigue solution. Then the classical Galerkin method with a complete
sequence of coordinate functions converges to the exact solution. A

similar result holds for the eigenvalue problem [387.

Theorem 3.6. Suppose, on some domain D,

m m
9 du Ju
- > A, >~ + :E: B, P + Cu =1
;E: 1\ 'x %x *
i, k=1
where u vanishes on the boundary of D, the coefficlents may be variable,
and the equation is elliptic. Then the classical Galerkin method with a
complete sequence of coordinate functions converges in energy to the exact

solution [38].
Theorem 5.7. ©Suppose, on the interval 0 <x <z and for t >0,

S
2" 3t~ 8T

&

where
u(x, 0) = u(0, t) = u(x, t) = 0,
f, g and their first two derivatives are continuous and £(0, 0) =

f(x, 0) = 0. Then Bickley's variation of the classical Galerkin method
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with {sin nx} as coordinate functions converges to the exact solution

[47].

Theorem 3.7 can be slightly generalized. For example a first
derivative term in x could be present and the coefficient of the
first derivative in t could be a positive function, and the same con-

clusion will hold.
The following is a generalization of Theorem 3.4,
Theorem 3.8. If the equation
Au + Bu = f

has a unique solution and T = A—lB can be extended to-a completely con-
tinuous operator then for sufficlently large n, there is a unique nth
approximate solution from the generalized moments methods, and this

sequence converges to the solution [54].

Recall that in using the generalized moments method A should be
K-positive definite. The practical difficulty in making use of
Theorem 5.8 is that there is no method to find K or even to decide

if a given operator is K-positive definite.

Considering the above theorems, it is apparent that the conver-
gence of the many suggested variations remains for the most part un-
proved. Papers dealing with a method per se are few compared with those
that simply apply a method without regard to convergence. The acceptance

of these techniques appears to stem from the fact that the solutions
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"agree" in some sense with either experiment or approximate solutions

obtained in other ways.



Chapter IV

RESULTS ON METHODS OF THE GALERKIN TYPE

Most of the theorems, definitioné and computational techniques
stated in this chapter could not be found in the literature, The
theorems either generalize existing results or give new information.
The techniques of solution of a problem are either a consequence of a

theorem or the result of experience with examples.
We will comsider throughout this chapter the problem
Ay = f (4.1)

subject to homogeneous boundary conditions where A 1is a self-adjoint
linear operator defined in a separable Hilbert space. If the boundary
conditions are not homogeneous a slight modification to the problem will
usvally maske them so. In particular we investigate the question of
gselecting "optimal" sets of coordinate functions and weight functions

for the method of weighted residuals.

Throughout this chapter, it is assumed that (k.1) has a unique
solution which will be denoted by y*. In particular, then, the operator
1s one-to-one and has the property that for any linearly independent set

{cpi} B 4n D, the set {L(cpi)} B is linearly independent in the
i=1 i=1

range of L.

A, Definitions
n

i=1

Definition 4.1. A linearly independent set of functions {@i}

is an L, (energy) optimal Galerkin coordinate set with respect to the
36
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operator A provided that the Galerkin method using this set of func-
tions as coordinate functions gives the best L2 (energy) approxima-

tion in Sn(m) to  y¥.

Definition 4.2. Suppose each of {¢i} ® and {Wi} *® isa

i=1 i=1

linearly independent set of functions. Then ({mi}, {Wi}) is called

an L, (energy) optimal weighted residuel pair with respect to A

provided this pair used in the method of weighted residuals gives the

best L, (energy) approximation in Sn(w) to  y*.

Definition 4.3. The operators Al ahd A2 with the same dowain

are strongly similar provided there is a linear operator P such that

Definition 4.4. The operators A, and A, with the same domain
are similar provided there exist continuous linear operators Pl and
P, such that AP, = A, and AP, = A,

2 11 2 22 1

Definition 4.5. A pair of linearly independent sets of functions

({@i}, {Wi}) is an L, (energy) almost optimal weighted residual pair

with respect to A provided there is a number -C such that for all i

" A(Wi) - CPi“< c

where the norm used in the L, (energy) norm. It is obvious that opti-

mal implies almost optimal.

Definition 4.6. Suppose {wi} is a linearly independent set of

coordinate functions for the Galerkin method amd y_ is the ntl
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approximate solution to (4.1). ILet BcP dencte the operator which maps

o

the right hand side, f, to y,  and R = At Bm. Then {wi} will
be called an R-optimal Galerkin coordinate set if for all sets {*i}

ENENNE

The set will be called almost R-optimal if there is a positive number

C such that
inf I
i chu < Cin "RW
where the inf is taken over all {wi} in the space.

In connection with the above definition it should be pointed out
that examination of the norm of the remsinder operator could very well
not be an indication of the smallness of ||y* - ynll since the operator

norm is defined as
| Ryl = nf [IRgll
and there could be some function g such that
< < Tl = - .
HRCPH Rl <llrzll = [1* - v,

B. Fundamental Theorems

The only previously published attempt to find an optimal use of
the metﬁods considered herein is found in [45]. The approach used in
this reference is to introduce the nonstandard energy norm. (See

Definitions,) This allows certain interesting results to be established.
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In [45] the problem (4.1) with homogeneous boundary conditions
where A 18 a positive definite self-adjoint operator is investigated.
They consider the domain of A to be L2, Hl’ and H2 respectively,

which are determined by the three immer products (u, v), (Au, v) and

(Au, Av).

In this setting the following theorems are obtained by these

authors.

Theorem 4.1. The best nth approximation in energy to the solution of
(4.1) is given by the classical Galerkin method regardless of the co-
ordinate system. If the coordinate functions are complete, then the

approximations converge in energy to the solution.

Theorem 4.2. The set'{qﬁ_}is an R-optimal coordinate set for (L4.1) if
the span of the first n elements is the same as the span of the first

n eigenfunctions of the problem
Au = \u
with homogeneous boundary conditions.

Theorem 4.3. An almost R-optimal set for a problem defined by an operator
Al is an almost R-optimal set for a problem defined by an operator A2f

if Al and A2 are sinilar.

These same theorems are also proved in the space obtained using the

inner product (Au, Av).
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It is clear that the optimal approximation to the solution y* by
a function in Sn(@) will be the orthogonal projection, Yy of y* onto

Sn(qn) . Also

®

.'Y*'-'yn"'yI'lJ (yr'l,Cpi)=O,i=l,...n.
in whatever space is being considered.

The following result from this investigation is in the spirit of

the above theorems.

Thecrem 4.4, In the norm induced by (Au, v) the pair ({Qi}, {A¢i} )
is an optimal weighted residual pair for (4.1) for any linearly indepen-

dent coordinate set {@i}.
Proof: We know
(v 931 = vy @31
That is,
(8, 49;) = (Ay,, A9,).

w

However Ayb = £ anpd letting Ami gives

i
(f) Wi) = (AynJ Wi)

which is the weighted residual system. Notice that the self-adjointness
of A 1is not used. A somewhat stronger and much more useful result than

Theorem 4.4 is the following for self-adjoint operators.
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Theorem 4.5. The coordinate set<{¢i} is an L2 optimal Galerkin set for

A in (4.1) if and only if Sn(cp) is an invariant subspace of A.

Proof: Suppose Sn(m) is invariant under A. Then Amj is

in Sn(w), j<n and

(yo) ACPJ-) = (yn’ A(Pj).
Since A 1is self adjoint this gives
(Ayo) (Pj) = (AynJ (pj)
or
(fJ q)j) = (AynJ q)j)
th

which says Y is the n ~ Galerkin approximation.

Suppose Sn(m) is not invariant under A. Then for some Jj< n,

A(pj is not in Sn(cp). Then

By, ;) = (v 495) # (3, A2y) = (v, @) = (£, 9,).
. th . . .
so that vy, 1s not the n = Galerkin approximation.
Corollary: The eigenfunctions of

Au = Au

subject to homogeneous boundary conditions form an L2 optimal Galerkin

coordinate set.
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Proof: SH(Q) is invariant for each -n and hence Theorem 4.5

gives the result.

Theorem 4.5 is useful since if a set of coordinate functions have
been chosen, it can easily be determined if Sn(w) is an invariant sub-

space and hence if the Galerkin method yields the best L2-approximation.

Once a set of coordinate functions is selected the question arises,
"Is it possible to choose weight functions such that the pair of sequences
will form an IL,-optimal weighted residual pair?" The next theorem answers
this gquestion in the affirmative under most circumstances. That is, for
the problem (%.1) to have a solution, the function £, the right-hand
side, must satisfy certain conditions. We will call such functions
admissable. Then we have another theorem.
Theorem 4.6. Corresponding to any set {@i}'ml of linearly independent
admissable functions which satisfy the homo;;neous boundafy conditions
there exists a sequence {wi};:l of functions such that ({mif’ {wi}) is
an L2—optimal weighted residual pair.

Proof: ILet LA be the solution to Ay = ?; subject to the homo-
geneous boundary conditions. Existence is assured since ?; is admissable.

We know that (yO, (pj) = (yn, cpj) so that
(Ayn’ WJ) = (yn: ij) = (yO: AWJ) = ,(Ayo: Wj) = (f, Wj)' :

Thus (Ayh, Wj) = (f, wj) which is the system of equations for the method
of weighted residuals. This proves ({q&}, {wi}) is an L,-optimal weighted

residual pair.



b3

Notice that if Sn(q)) is invariant then any basis for Sn(cp) and
its image under A could be used as an optimal weighted residual pair.
Also, in accordance with Theorem 4.5, any basis for Sn(Q) is an L2
optimal Galerkin coordinate set.

1

Theorem 4.7. If A, is strongly similar to A2 axdp{wi} is an optimal
Galerkin coordinate set with respect to A, then {P(@i)} is an optimal

Galerkin coordinate set with respect to Ae.

Proof: By Theorem 4.5, Sn(¢) is invariant under A;. Since

A2 is strongly similar to Al we have

AP(s (9)) = PA, (8 (9)) = P(5_(9))

or P(Sn(¢)) is invariant under A, and again by Theorem 4,5 any basis
for P(Sn(m)) is an optimal Galerkin coordinate set with respect to A,.

This completes the proof.

Theorem .4.8. Suppose Al and 1-\.2 are similar and that ({ cpi}, Wi})

is an optimal weighted residual pair with respect to Al. Then {@i},{P(wi)}>

is is an optimal weighted residual pair with respect to A2.

Proof: We have Ayw, = @, and by similarity A2P2(wi) = Al(wi) = 9,.

Hence the result follows.

Theorem 4.9. Suppose Al and A2 are similar. Then an almost optimal

weighted residual pair with respect to Al is an almost optimal weighted

residual pair with respect to A2'
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Proof: Suppose ({cpi}, {Wi}) are almost optimal for A,. Since

Al and A2 are similar
lagGe) - ol = Nea o) - ol < ea Gl + g I

Since Pl 1s continuous and linear it is bounded so that there is a

XK such that

e Gl < 2l Aol
Furthermore there is a number C such that
> o) - oll > [lam)ll - [logll]
We can take the {(pi} such that H q>iH = 1. Hence
llagr)ll < ¢+ 1
so that
lea, Il < x (c+1)
and the first inequality above gives
Has(w;) - gl <k (C+1)+1=m

This completes the proof.

An additional and very significant result comes from using optimal

coordinate and weight functions.

Theorem 4.10. If the optimal coordinate functions are used in the Galerkin

method or an optimal pair is used in the method of weighted residuals then
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the approximate solutions converge to the exact solution.

Proof: By optimality the approximate solutions are orthogonal
projections of the exact solution on a sequence of monotonically in-
creasing subspaces. Hence the approximate sclutions converge to the

exact solution.

From this theorem it is seen that if optimal coordinate and weight

functions exist the method will converge.

Corollary to Theorem 4.6. If the conditions of Theorem 4.6 are
satisfied the method of weighted residuals converges using the optimal

pair.

Finally, it can be remarked that when optimal functions are used
the sequence of norms ||yh - y*ll is nonincreasing. This follows since

each y_  1is the orthogonal projection Sn(m) and Sn+l(¢)13 Sn(m).

C. Improving Approximations
A description will now be given for the selection of an optimal

weighted residual pair.

The usual procedure 1n the method of weighted residuals consists
in selecting coordinate functions first and then weight»functions. The
choice of coordinate functions may be suggested by the problem but is
usually a matter of taste. TFor example, if the solution is known to be
periodic then of course periodic coordinate functions would be chosen.
Frequently, however, the only constraint is that they should be linearly

independent and satisfy the homogeneous boundary conditions. Once the
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coordinate functions are selected the weight function choice is either
based on the ease of resultant arithmetic (i.e., the computation of the
inner products) or is completely arbitary. They should, of course, be

linearly independent.

The following is suggested for these selections and is of course
based on the preceding theorems. Select & sequence LA of linearly in-
dependent functions that satisfy the homogeneous boundary conditions and
such that there is enough "arbitrariness" (e.g., sufficiently many arbi-
trary constants) in each W, 8o that Awi can be "forced" (e.g., the

constants chosen) to satisfy the homogeneous boundary conditions.

It follows from Theorem 4.6 that the pair ({m.},<{w.}>, where
i i
@, = Aw., form an optimal weighted residual pair. This method of choice
i i’

is exhibited in the examples.

Another observation in connection with the above is quite helpful

and can be used to obtain additional approximations.

Tet

n
v, = Z a; (A, )
denote the nth approximate solution. The system of equations to solve

using {Awi} as coordinate functions and.{wi} as weight functions is
(Ayﬁ, Wj) = (f, wj) j=1, ... n

or
n

2
Z ai (A Wi’ Wj) - (fl Wj)
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or

n
Z a; (A‘Wi, ij) = Z 8y (cPi) (PJ) = (f, WJ-)'

Interchanging the roles of weight and coordinate functions, now using

n
W=, P

for the approximate solution, the system to solve is

(Ayﬁ, ij) = (£, ij) j=1, ... n

or

(£, ij).

n
Z bi (AWi, ij) =Z bi (cPi: CPJ)

Hence we conclude that the coefficient matrix to be inverted in each
system is the same so that very little extra effort is needed to deter-
mine both ?n and §n’ i.e., merely the additional calculation of the

inner products on the right.

Once these two approximations are known they can be used to give
an additional approximation of y¥ as a linear combination of in and

ﬁn which involves only a 2 X 2 matrix.

D. Computational Considerations

In [45] a coordinate set is defined to be numerically optimal
provided it is complete and the eigenvalues of the coefficient matrix for
the nth approximation in the Galerkin method are bounded above and below
independent of n. It is then shown that a numerically optimal set is

invariant under similarity.
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These ideas could easily be extended to the method of weighted
residuals but have not been for two reasons. First, as shown in the ex-
amples, unless some prior information is available to give insight into
the character of the problem, a random selection of coordinate functions
may be just as good if not better than a set obtained using the idea of

similarity.

Second, it is not reasonable to calculate eigenvalues of the co-
efficient matrix. The motivation for this idea is simply not to have the
entries in the matrix get too large or too small and therefore create
difficulties in machine calculations. This can usually be avoided by
multiplication of each coordinate function by an appropriate constant.
For example, if the coordinate functions were sin nnx and the inner
products in the coefficient matrix were of order n, and hence increas-

ing greatly as the size of the matrix increased, by using ;éiE—EEE $

Vo

as coordinate functions, this difficulty would be overcome with no
essentlal change in the problem. Therefore, the general rule is to
properly "normalize" the coordinate and the weight functions to prevent
the inner product entries in the coefficient matrix from becoming ar-

bitrarily large or small.

It should be pointed out that the nth approximation may not be as
good as the (n - 1)st approximation. That is, the sequence consisting
of the norms of the difference between the nth approximation and the
exact solution is not monotone decreasing. This can be observed in the
examples. In practice, however, where the exact solution is not known
there is in general no way to decide which particular approximation is

better. All that is assured, if the method employed has been shown to
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converge at all, in that for sufficiently large n the nth approxi-
mate solution can be made as close ag desired in norm to the exact

solution.

The following computational scheme is suggested by the preceding

section and by observation of the examples.

Suppose several approximations have been obtained using %@i} as
coordinate functions. A sequential limit for the first few coefficients
may be guessed giving, say, an nth approximation Iy with some certainty.
Then other approximations can be obtained using {yn, Qg Ppypr voe
as coordinate functions. This will necessitate inverting a much smaller

matrix and hence a conslderable saving in machine time.



Chapter V

A RETATED METHOD

The purpose of this chapter is to present a method for the solu-
tion of the type of problems under consideration, to prove that it is an
optimal method and to prove that the method converges. The method is no
more difficult to apply than those previously considered and has several

reasons to be prefered.

Suppose throughout this chapter I is a linear operator defined

in a separable Hilbert space and y* 1is the unique solution to

L(u) = F (5.1)

subject to homogeneous boundary conditions. Iet {¢i} and {Wi} be sets of
linearly independent functions which satisfy the boundary conditions.

Furthermore, let

n n
un=§:aiq’i’ Vn=zbi”’i'
i=1 i=1
Definition 5.1. The function U, is called an nth optimal apprdxima-

tion to the solution of 5.1 with respect to the set {@i} provided

Lo -2l s B2 (2 e n)- <l

(=1

for any choice of the coefficients cy .

Definition 5.2, The set {@i} is a better coordinate set for 5.1 than

{wi} provided that-if u and v are the respective ntt optimal ap-

proximations then

50
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Hotw) - £ll € (v - £l

These definitions are exactly the criteria commonly used, that

is, we ask what function most nearly satisfies the operator equation.

The first result is a necessary and sufficient condition for a

function to be an optimal approximation.

Lemma 5.1, The function u, is the nth optimal approximation with re-
spect to { @i} if and only if L(un) is the orthogonal projection of f

on 8 _(L(9)).

Proof: We have

n
ey -2l = 120 aney) - £l 1Y eney) - 1)

for any choice of the ci’s. This is exactly the characterization of the

orthogonal projection.

Lemms 5.2. If {E&} is an orthonormal basis for Sn(L(@)) and u  is

the nth optimal approximation with respect to {@i} then

n
L(u) = . (£, ) 5. (5.2)

Proof: By Lemma 5.1, L(un) is the orthogonal projection of f
on Sn(L(m)) and truncation of the Fourier series gives the orthogonal

projection.

Notice that equation 5.2 can be used to determine the approximation
u . That is, having selected the {@i} one can calculate {L(@i)} and find

(say by the Gram-Schmidt process) an orthonormal basis {Ei} for Sn(L(Q)).
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Then equation 5.2 can be solved directly for the coefficients a; in
U using the linear independence of {E&} or a set of linear independent
functions {Wi} can be used to give the system

n

n
> e o), w) = Dy (6 )@, v,) d=1, .n

for the determination of the ai's.

Theorem 5.1. The set {Qi} is a better coordinate set for 5.1 than {Wi}
provided the orthogonal projection of f on Sn(L(@)) is a better ap-
proximation to f than the orthogonal projection of f on Sn(L(W)),

that is
n n
“Z (£, 7)o - 1] <“Z (5, )Y -7 .
i=] 1
Proof: By Lemma 5.2 the norm ineguality becomes
Ho(u) - £l < lz(v)) - ||
which gives the result.

The question of convergence of this method 1s answered by the fol-

lowing result.

Corollary to Lemma 1l: The norms |IL(un) - f|| converge monotonically

to zero provided f is in SZLiwii.

Proof: Since L(un) is the orthogonal projection of £ on the
subspaces Sn(L(m)) and these increase in dimension it follows that the

norms converge to zero. The monotonicty comes from the fact that, since
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the orthogonal projection of f on Sn+l(L(¢)) could be no worse an

approximation to f than the orthogonal projection of f on Sn(L(w)).

To illustrate the application of the method presented in this

chapter, we consider the equation
Iy=y"+y=-x

which y(0) = y(1) = 0. As coordinate functions which satisfy the

boundary conditions, we select
n
¢h(x)_= x(1-x) n=1,2, ....
To obtain an approximation in the form

we determine an orthonormal basis {E&, 62} for 32(L¢)- An acceptable

choice is

?P-l(x)= I%%(-Q+X—x2)

— 2

cpe(x) = V—é%—,(% (- 6 + 13x - 3x + 2x5)
We now require that

L-VE = (- X, 51) -(El + (" Xy 52) '52

which is an equation involving the two unknowns ay and 8y By ex-

pressing the left-hand side as a linear combination of E& and 52, it
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is possible to solve directly for a; and s However, if the inner
product of each side with any two linearly independent functions is taken,

two equations in ay and ay result, i.e.,
2
(Ly2’ Wm) = 1;- (- %, CPP) CPP’ W] B F 1, 2.

We remark that if, in particular, w, are chosen to be §m’ the resulting
system of equations are the same as would be obtained from the method of

weighted residuals. For our example, to simplify computation we select

=1, wyo = X.

V1 2

Then the system of equations, after simplification becomes

_ 22

fay t 8, = 757
L s
2~ 2437 °

It may be the case that the nth approximation obtained by this
method is not the orthogonal projection of the solution on the span of
the first n coordinate functions. However, we have the following

result.

Theorem 5.2. If the operator L has a bounded linear inverse L-l and

if Yy is the nth optimal approximation to the solution of
Ly =1¢f
then

lim "'yn - y|| =o.
n—o0
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Proof: We have
Iy, - vl = &% Gy, - O KT N, - £l
n n n

and since || Iy, - f|l can be made arbitrarily small the result follows.



Chapter VI

APPLICATIONS AND EXAMPLES

The purpose of this section is to apply several of the gbove meth-
ods to specific problems in order to illustrate the details of application,
to demonstrate the approximation accuracy, and to point out certain dif-

ficulties which may arise.

We apply the Galerkin method and the method of weighted residuals

to approximate the solutions to the following problems.

I. - y" -y =x with boundary conditions y(0) = y(1) =0

1
II. ﬂm-/ﬂK&;my@>a=%x<1-5)
0

where

x(1 - g) for x < &
K(X) §) =
tE(l - x) for £ <x

|
III. ((1 + x)y') = x with boundary conditions y(0) = y(1) = 0O

In each of the problems considered, the operator is linear, self-
adjoint, and positive definite. In addition, the operator in problem II

is bounded, and hence continuous.

We consider two complete linearly independent sets of functions

which satisfy the boundary conditions in each of the problems,

() =P(1-x), n=1, 2

Il

P, (x)

sin nmx, =n=1, 2, ...

56



57

Thus, applying the general approximation theory of Chapter II, we take the

space X to be the completion‘bf the subspace of L, spanned by wn(x),

To determine whether or not the Galerkin method will give the best
L2 approximation using a fixed set of coordinate functions, we apply
Theorem 4.5. That is, we determine whether or not the given operator ap-
plied to a linear combination of the first n coordinate funétions gives
an element which can also be written as such a linear combination. If the
Galerkin method does not give the best approximation, applying Theorem 4.6,
we determine a second linearly independ set of functions, wn(x),
n=1, 2, ..., to be used as weight functions in the method of weighted

residuals which will give the best approximation,

In each of the following examples, we find eight approximations, the
third through the tenth. The nth approximation to the solution of Ay = f

is given by

n

v, (x) = Z 8, ;%)

J=1

We then evaluate the nth approximation at each of the points X; = 0.1(i - 1),
i=1, ..., 10 and compare these with the exact solution at each point.
Finally, since the exact solution y 1is known, we are able to evaluate the

norm of the difference of the exact and approximate solutions.

The three norms considered are defined as follows.
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The L2-norm is
1
2
(v -y, 7 -3

Iy - vl
L

The A-~norm is
L
2
By -y, ¥ -7,)
1
2
(f-y,7v-7,)7

Uy - vl

1

i.e., the energy norm.

The sup-norm is

lly - vl =xe§gf)1] | y(x) - T ()|

In example 1, we use the Galerkin method to solve Problem I. We

restate the problem equivalently as

n

y" + y = -x with boundary conditions y(0) = y(1) = 0O

As coordinate functions which satisfy the boundary conditions, we

select

mn(x) =x(1-%x), n=1, 2, ....
Thus

n-1 n n+1
X

Ap = mn" o = n(n - l)xn_2 - n(n + 1) +x -X

Applying the Galerkin method, we seek a jth approximation in the

form
J

¥ (x) = Z 2.0, (x)

n=1
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where the J unknowns a, ns= 1, ..., J are determined from the fol-

lowing system of J equations

J
Z a (A9, o) =(x 0),m=1, ..., J

n=1

where

m(m-1) + n(n-1)

m+n+ L

(A(Pn’ q)m) T (on-1) (o) (mintl) ~ (mot2) (mént3)

1

(- %) = - Yy

The éxact solution to Problem 1 is
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In Example 2, we use the method of weighted residuals to solve

Problem I.

As coordinate functions which satisfy the boundary conditions,

again we select
n
@n(x) =x(L-x),n=1, 2, ....

As weight functions which will give the best approximations, we

solve
Awn =@, n=3, oo, 10

which gives

n+2

w =A sinx -C_ cos x + c xk-l

n n n, ZE: .
k=1
where
n+2
L
An = sin 1 Cn cos 1 - Cn
1 k

Cn(n+2) = -l, Cn(N+l) = 1 and

an = —k(k+l) Cn(k—+2)) k = l, seey n.

Applying the method of weighted residuals, we seek a jth approxi-

mation in the form
J

yy(x) =D 80, (x)

n=1
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where the J unknowns a,ns= 1, ..., jJ are determined from the fol-

lowing system of J equatiouns
J .
E ; an(Aan; Wm) = (-x, Wm) m=1, coe, J
n=1
where

1
(Aq)n’ Wm) - (an’ Awm) - (q)n’ q)m) = (wtntL) (wtnt2) (mnts )

m+2 Cm

. 1 m+2 1
= § : X - - gos + |
(-x, Wm) - e le ( sin 1 l) z ka(sin 1 l)

k=1 k=1
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In Example 3, we use the method of weighted residuals to solve

Problem 1.

As coordinate functions which satisfy the boundary conditions,

again we select
qJn(x) =x*1-x), n=1, 2, ....
As weight functions, we use
wn(x) =ginnx, n =1, 2, ...

Applying the method of weighted residuals, we seek a jth approxi-

mation in the form
J
y;(x) =§ a @, (x)
n=1

where the J unknowns a,ns= i, ..., J are determined from the fol-

lowing system of j equations

J
Z an(AanJ Wm) = (-x, Wm) m=1, ..., J
n=1
where
o 1
(Acpn, W)= (1 - (mr) )f 7 (1-x) sin mrxdx
0
1 m
(‘x’ Wm) “m (-1)".
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In Example h, we use the Galerkin method to solve Problem 1.

As coordinate functions which satisfy the boundary conditions, we

select
q)n(x) =sinnmx, n=1, 2, ....
Thus
Ap ="+ = (l - (nn)2> sin nmx.
n n n

Applying the Galerkin method, we seek a jth approximation in the

form
J

ry6) =3 gt

n=1

where the J unknowns 'an, n=1, ..., J are determined from the fol-

lowing system of j equations

J
Zan (ACPn, (Pm) = (-x, CPm), m=1, «oe, J
n=1
where
% (l - (mn)2> ifm=n
(ap ), @) =
0 ifm#n

I

(x, 9) = = (-1



Thus

2(-1)"

2l - (2]

and

J
Yj(x) = % Z (-2)" sin nmx.

g [1 - (m)2]

67
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In Example 5, we use the method of weighted residuals to solve

Problem I,

As coordinate functions which satisfy the boundary conditions, we

select

@n(x) =sinmx, n=1, 2, ...,
and as weight functions, we use
n
wn(x) =x (1-x), n=1, 2, ...,

Applying the method of weighted residuals, we seek a jth approxi-

mation in the form

J
730 = aAe, w) = (x, w)m=1, ., g
n=1

where

(l - (nﬂ)g)fl ¥ (1-x) sin nﬁ};dx
0

(A, w,)

[}

(=, w) = = (-1
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To conclude the analysis of Problem I, we compare the results of

Examples 1 through 5.

A comparison of the first three examples using as coordinate

functions
q)n(x) = Xn(l-x)’ n = l, 2, LR ]

shows that the Galerkin method gives good results. In the second ex-~
ample where an optimal weighted residual pair is used, it can be seen
that in most cases, the approximations are not much, if any, better

than those obtained by the Galerkin methed. In those cases where the
Galerkin method apparently gives a better approximation, the discrepancy
is attributed to the inaccuracy of numefical evaluation of the inner pro-
duct expressions in the optimal weighted residual pair case and to the
error produced in the numerical evaluation of the integrals defining the
respective norms. This is substantiated by Theorem 4.10 since the se-
quence of norms {Ilyh - ybll} is non-increasing which is not reflected
in this example. A comparison of examples 2 and 3 shows more clearly
that the optimal weighted residual pair gives the best approximation us-

ing this set of coordinate functions.

In general, the problem of solving Awh = @n to obtain an
optimal weighted residual palr is as difficult as solving the original
problem Ay = f. In Problem I, in particular, after obtaining the optimal

weight functions, 1t was found that these functions were very close to

being orthogonal to the right-hand side of the original equation. By
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examination of the inner-product expression (£, Wn), it can be seen
that as n increases, we have (f, wn) represented as the sum of three
increasingly large factors to produce a term which tends to zero. Thus
to obtain the accuracy required, it was necessary to evaluate (f, Wh)

using double precision arithmetic.

In summary, we conclude that although the Galerkin method did not
give the orthogonal projectlion of the solution on the span of the first
n coordinate functions @n(x) = x°(1-x), the increased difficulty of

finding such a projection did not warrént.the increased effort.
In Examples 4 and 5 coordinate functions
@n(x) =sin mx, n=1, 2, ...
wére used. In this case
Ap = f1 - (nﬂe)] sin nmx

which shows that the Galerkin method gives the orthogonal projection
since, as in Theorem 4.5, the span of the first n coordinate functions
is invariant under the operator A. Thus, as we would expect, the nth ap-
proximation using the Galerkin method in Example 4 is much better than

the corresponding approximation obtained by the method of weighted re-

siduals in Example 5.

As a final comparison we note that in Examples 2 and 4 orthogonal
projections on the spans of the respective first n coordinate functions

are obtained in each case., However, each approximation in Example 2 is
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better than the corresponding approximation in Example Y, In fact, each
approximation in Example 1, which is not the orthogonal projection, is
also better than the corresponding approximation in Example 4. This in-
dicates that the coordinate functions @n(x) =x%(1x), n=1, 2, ...

are a better set for Problem I than @n(x) =sinmx, n=1, 2, ....
Although no criteria for the selection of a best set of coordinate func-
tions is given, we remark that any additional information about the prob-
lem such as physical characteristics, periodicity of the solution, etc.,
are helpful in determining an optimal set of coordinate functions. In
the case of Problem I, we speculate, for example, that coordinate func-
tions mn(x) = x7(1-x) give a better approximation than ¢n(x) = sin nmx

since the right-hand side of the equation, -x, 1is certainly not periodic.
In Example 6, we use the Galerkin method to solve Problem II.
As coordinate functions we select

%&)=fﬁm%n=l,&.“.

Thus
1
Ap = ¢ (x) -f K(x, £) ¢ (&) at
0
ox n+2 n+3
= - EOEES) * E %)+ Sy T mee )

Applying the Galerkin method, we seek a jth approximation in the form

J
Y5 (x) = Z an(pn(x)

n=1



Th

where the J unknowns 8 B = l, ..., J are determined from the fol-

lowing system of J equations

J
E an(Aan: CPm) = %—' (x - X3: ‘Pm): m=1, ..., J
n=1
where
2 2
(Aan’ ch) = (m+n+1)(m+n+2)(m+n+3) * (n+1) (n+2) (n+3) X

on + m + 6 1
[( mo+3 ) (mnth ) (min+5) © (m+2) (o3 )}

1 3 _ 2m + T
g &= x5 ) = STy (s ) (5)

By means of Green's function, the boundary value problem, Problem I,
can be transformed to the integral equation of problem II. Thus the solu-

tion to Problem II is also

sin x

- - X
sin 1

y(x) =

We observe here that, to within the accuracy of numerical methods,
the nth approximation obtained by solving Problem II is the same as the
corresponding approximation obtained by solving Problem I (Example 1).

This fact is better illustrated by considering the coordinate functions
%&)=Mnm&n=1,%.”.

Applying the Galerkin method, we seek a jth approximation in the form
J

yj(X) =Z a @, (x)

n=1



™

where the J unknowns a,ns= l, ..., j are determined from the fol-

lowing system of J equations

J
1 s
E an(A(Pn: ch) =K(X-X3, (Pm) m=1, sea, J
=1
where
% 1 - (m:r)2 ifm=n
(ACPn; ch) =
0 ifm#n
1 ' 1
z(x - %0, 9 ) = = (-1)"
Thus

2(-1)"

n " o[l - (nﬁ)EJ

which is the same as the result obtained in Example L.

We conclude that all observations made concerning the operator and
approximate method of determining a solution to Problem I are equally

valid in determining a solution to Problem II.
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In Example 7, we use the Galerkin method to solve Problem IIT.

As coordinate functions which satisfy the boundary conditions, we

select
n
@n(X)-’—"X (l—x)} n=l’ 2, so 0

Applying the Galerkin method, we seek a jth approximation in the form
J

7y =D a0,

n=1

where the J unknowns a_, n=l, ..., J are determined from the follow-

ing system of J equations

J
E an(A(Pn: q)m) = (X: (Pm); m=1, .0, J
n=1
where
1 1
(Ao, @) =f ((l +x) Q)+ <P;1> ?a, = —f (1+x) @od
0 0
m_ {mm +m+n) (I-mn) (m+1)(n+1)
T mtn-1 m+n T mintl mn+2

1

Cer %) = ) (@s)

The exact solution to Problem III is

y(x) = %-[x(x - 2) + l2—£l¥t¥£l] .

in 2
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In Example 8, we use the Galerkin method to solve Problem ITII.

As coordinate functions which satisfy the boundary conditions, we

select
%&)=ﬂnm&n=l,&.u.
Applying the Galerkin method, we seek a jth approximation in the form
J
y5(x) = E a @ (x)

n=1

where the J unknowns a, n’= 1, ..., J are determined from the fol-

lowing system of j equations

t a (a9, @) = (x, ) m=1, ..., J

n=1
where
- m [(.1)m+n - '1] [f'ﬁei——r;-é:] ifm#n
(ap,, @ ) = (o”-n")
- E-(mﬁ)g ifm=n

(x, @) = - = (-1)"
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In Example 9 we use the method of Weighted residuals to solve

Problem IIT.

As coordinate functions which satisfy the boundary conditions, we

select
n
e (x)=x(1-x),n=1,2 ....

1
H
Tt can be shown that the operator in Problem III, Ay = ((l + x)y )
1"

is similar (Definition 4.5) to the operator Ay = y". For weight func-

tions, we solve

to obtain

v, (x) = (n+l)(nf2)(n+5) { [+ 3) - (av 1)x] - 2 }

Thus, applying Theorem 4.9, since {Qn’ Wﬂ}‘” is an optimal weighted re-
, n=1

sidual pair with respect to the operator AA2, {@n, wn},“ is an almost
n=

optimal weighted residual pair with respect to the operator Al.
. : . .th .
Applying the method of weighted residuals, we seek a j  approxi-

mation in the form
J
¥;(x) =ZL a 9, (x)

where the m@wm,awn=l,“”j are determined from the fol-

lowing system of j equations
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z an(Acpn, Wm) = (-x, Wm) m=1, ..., J
n=1
where
= 1 2
(Aq)n’ Wm) " (1) (m+2) (m+3) { (m +3) [nISITn:l L (ot 1?1+:1+I§ t2)
_(m+2n+l)+(m+l)(n+l)]+ 2 }
mint3 mn+h (nt+l)(n+2)

(x, w ) = - (21112"'9!11'*'7)
’ 'm 3w+l ) (m+2) (mt+3) () (mt5)




83

6 oTdmrexy . 20-6L9TH 20-L9°h 20-6L9°4 20-988°) 20-049°4
20-695°6 20-026°6 20-004°6 20-199°L 20-698°¢
§0-0.2°0 §0-002°0 §0-2L2'0 £0-050°0 £0-500°6

000000  000000"  000000°  000080°- 000000°-
2048007~ g00000°~ 000004°- GOBLOO"~- 610800°-
SOLIZ0°~ 984120°- @OLI20°~ 96L610°- [29640°-
L96620°- 966620°~ 996620°~ [20080°- 996080°~
068980°- 9GLOEC°~ Q109807 6LLLED - $90.80°-
LOLID0 = D69ID0°~ QO0LID0°~ DEGON0O°~ 0600M6°-
SSI2p0°~ 622200°- 900ZD0°- LOQ0D0°- LO04N0°~
BD6S0°~ B0S6R0°~ 269680°~ 009090°- 266650°-
015050°~ 2209807« S¥I9E°- DGOOR0°- 069L80°-
000620°~ 268620°- L6L6Z0°- S0S020°~ L16020°~
000000°  000000°  000000°  000000°  000000°

(X104 {X16A (X18A (X)1LA (X194

00+0560°Z  90-0099°5  D0-QL99°Y  0049S00°Y~ 90-09667L  £0-S021°
0009298°€  D0-LL99°)  C0e91D9°6- 90-0966°L £U-£921°)

LOOLOMLTL  M0e0INL 0 BO-U966°L 000210576

L0=1208°9- 90-1566°L  B0+0099°)

10-2000°6- §0-8921°)
00+2896°1-

11

v

131

20-629°%
20-916°L
g0-161°¢

000000°-
291804°-
e.ow.,..
109060 "-
S86.50°~
2L0490°-
rATY T I
9986£0°~
026L80°-
$S1620°~
oo000e°

(X1 6A

006262
000686,
£0-6899°1
£0-9859°1
10e5550°2
0009269°
113111 1

14 24

20-616°1  20-162°) BN ¢S
20-000°L 20-000°S WO Y
£0-090°8 £0-559°L HEN T
000088°- 000000°- 050000°- $°4
$SHLO0°- 0204107~ 000940°- ¢°
$S10Z0°- 905020°- 100620°- &°
200060°- 2050207~ 91i950°~ °
655160°- D62S50°- 209090~ 9°
915090°- 069090°- 652100~ §°
696000°- MSLEDO°- £D90E0°- 9°
SOS090°- LS1S00°- 200260°- §°
6S0880° L3S0~ 1D2p20°- 2°
£0L020°- 909520°< D2EI0- 4°
000000° 000008  o0s000°  0°
(X194 (X164 XIA X
00e0909° L 00+LSSL°T  40-0DCD G-
0049508°L= 00060S8°2  30-1L90°S-
004662076~ 00+8666°2  10-2042°6-
00+00LI6" 0= 000081E°1  40-26L2°9-
000(509°6~ 000299L°1  10-6059°-
0000E19° D= B0eDSL6°1  0-IS60°9-
000420072 00s61LE"H  10-9002'9-
1O-6DL0°4-  10-1269°8  10-2606°2-
T3] 12y ty



8h

A comparison of the results in Examples 7 and 9 shows that in all
of the norms considered, the Galerkin method gives better approximations
than the method of weighted residuals using an almost optimal weighted
residual pair. Thus we are lead to conclude that in selection of the
best approximation method, unless a priori information is available; the

Galerkin method will give relatively good results.

To illustrate the use of the Galerkin method for partial differ-

ential equations, we consider the problem

Iv. v2u+xgxﬂ=2x2+2y2+2sc2y2-2x2y_xy2+xy-2x-2y
with boundary conditions

u(x, 0) = u(X) 1) = u(0, y) = u(1, y) = 0.

As coordinate functions which satisfy the boundary conditions, we

select
@n(x) = sin prx sin qry

where the correspondence of p and g To n 1is given by

Ap = Vecp tx o= [-:fg(p2 3 qz) sin pnx + p+x cos pﬂtx]sin any.
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Applying the Galerkin method, we seek a jth approximation in the

form
J
Y5 (x) =2 aann(X)
n=1

where the J unknowns a,ns= 1, ..., jJ are determined from the fol-

lowing system of J equations

J
Z an(Aan) (Pm) = (f: Cpm) m=1l, oo, J

n=1

where < dis the right-hand side of equation IV and if

qh(x) = gin rnx sin sny,

+ .
-—%r—'é—(-l)pr ifg=s,p#r
2(p~-r
ne 2 2 1
(A(Pn)q)m)‘= ")_'!_—(P"'Q)"gifq:S;P—r
0 if g # s

(£, 9) = == | 2a(x) - ()7 5(0) | [ (-1° - 1]

(sm)

where

A(r)

]

1 L 2 r
- == (—]_)r + [(m)5 - (Y‘n:)] [(—l) - l]

B(r) ——L‘——B- [(-1)r - 1] )
(zm)

The solution to Problem IV is

u(x, v) = xy(1 - x)(1 - y).
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We remark that this problem was considered by Mihklin [38]. He
applied the Galerkin method as we have done, however, his results are

incorrect due to sign errors in his calculations of (A@n, mm) and

(f, @,).
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As a final example we consider the application of the Galerkin

method to the initial value problem
V. y" + xy = 1 with initial conditions y(0) = y'(0) = O.

In attempting to apply the Galerkin method, we are immediately

faced with two problems.

The first problem arises in the selection of coordinate functions
which satisfy the initial condition. It is not difficult to satisfy the

initial conditions, for

n+l
@n(x) =x ', n=1, 2, ...

is one such set. However, the set
nt+l
Cpn(x)=x (R-x), n=1,2 ...

for any real number R, also satisfies the initial conditions. Thus, by
an appropriate choice of R, we are abie to force our approximations to

vanish at any desired point.

Assuming an appropriate set of coordinate functions has been se-
lected, the second problem arises in the calculation of inner products.
Since

(£, g) =fb fgdx

a

we must have some finite interval [a, b] over which the integration is

to be performed. We solve this problem by assuming that an approximate
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solution is desired only for certain values of the independent variable,
Thus we may assign to b, any value such that [a, D] contains all value
in which we are interested. In [31], Ames suggests that b be chosen
as some point at which steady-state is achieved (see discussion in
Chapter III). We point out, however, that this is not always possible.

In Problem V, in particular, noting that the solution is
230 (P gy )
n n!
y(x) = x (-1) (3x7)
=0 n+2)!

steady-state is never achieved; in fact, the solution becomes increas-

ingly unstable as . x dincreases.

We conclude that for Problem V the Galerkin method and the method
of weighted residuals are not applicable unless a second zero of the func-
tion y 1is known, in which case, we approximate the solution as shown in

the first three boundary value problems.



" Chapter VII

THE NONLINEAR CASE

The methods under consideration can, in principle, be applied'to
nonlinear problems as noted in Chaptér IiI. However, there are at least
two difficulties involved. TFirst, and less serious,although by no means
minor, is the fact that the system of equations obtained for the co-
efficients is nonlinear. Hence it may be an impossible task to solve
them. Second, there are no known convergence proofs for this class of

problems.

The above drawbacks have not prevented the use of a method. The
Tirst has been overcome by the use of very few terms and the second has

been ignored. Authors invariably claim "good" results.

The following 1s a summary of the use of Galerkin's method in a

nonlinear situation.

Cesari [33], in a very elegant paper, uses a Galerkin approach to
give an existence proof for a solution to certain nonlinear equations.

As an example he analyzes the problem
x"+x+faxd =pt, 0< t<1
with boundary conditions
x(0) = 0, x'(1) + nx(1) = 0

where o, f and h are nunmbers.

Following in this direction Urabe [42] considers the nonlinear

periodic equation

90
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dx
It = X(x, t)

where x and X(x, t) are vectors of the same dimension and X(x, t) is
periodic of period 2r¢ in +t. In particular he proves the following

theorem.

Theorem: The existence of an isolated periodic solution, ﬁ, of (7.1)
implies the existence of Galerkin approximations X for sufficiently
large m. The existence of Galerkin approximations X for sufficiently
large m implies the existence of an exact solution provided a certain

boundedness condition holds.

In a later publication Urabe [L4] compares his earlier techniqie
with a method of averaging when X(x, t) = \¥(x, t) where )\ is a small

parameter. A somewhat more detailed numerical analysis is given in [hB].

Locker [50] generalizes the work of Cesari to give an existence
analysis of
I = Nx
where L 1s an unbounded linear operator and N 1s a nonlinear operator.
When I, is self-adjoint his results reduce to Cesari's. He also gives a

simple example.

There 1s one other recent reference which mentions Galerkin's
method in connection with nonlinear problems. Bellman [32] considers a
method for replacing a nonlinear problem by a linear one. As an alterna-
tive to the main point of his paper, he briefly indicates that a one term

Galerkin approximation could be used to implement his method.
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In summary, there have been two uses of Galerkin's method on
nonlinear problems. First, as indicated above, a few existence results
have beenvobtained for certain problems by employing a Galerkin approach.
Second, and at the other extreme, the method has been applied without

regard to convergence.

To illustrate some of the difficulties which arise is attempting
to apply the Galerkin method or method of weighted residuals to non-

linear equations, we consider the following differential equation.
2 22 2 . .
(y')" + o7y~ = n«~ with boundary conditions y(0) = y(1) = 0

We note first that y(x) = sin mx is a solution to the equation,

but that it is not unique, for y(x) = -sin nx is also a solution.

In applying the method of weighted residuals, as coordinate func-

tions which satisfy the boundary conditions, we select
n
q)n(x) =x(lL-x), n=1,2, ...
and as weight functions, we use
wn(x) = Xn-l, n=1, 2, ....
.th : . .
We seek a j = approximation in the form
J
y5(x) =Z_l a o (x)

where the J unknowns ap,n= 1, ..., jJ are determined from the fol-

lowing system of j equations



J
(A Zlanq)n): Wm) = (TEE) Wm): m=1, ..., J. (7.2)

Thus we obtain a system of non-linear equations which may be difficult or

impossible to solve.

To illustrate, consider the case where J = 2. The system of

equations (7.2) becomes
«° + 10 5 2 = - 10 o8 + 711:2 + 1k 8 2 o 2
30 17 30 172 105 2 -

7 + 10 5 2 20 - hg . 485" + 8l L2 -
%) 1" 210 880 850 o T3

Solving this system, assuming a5 # 0, we obtain

2
- 7 _
L [y(nz + 10) - 7(n2 - 10) k+ 2 (711c2 + 1k4) kE]
e where ko 2001 - 28)
a, = ka,, where = .

201312 + 28

Thus, in seeking a two-term approximation, we find two possible solutions.
Continuing in this manner, it can be seen that as the number of terms in
the approximation increases, the number of possible solutions to the sys-
tem of equations (7.2) also increases. It is apparent that without a
priori information regarding the solution of a non-linear problem, a purely
arbitrary choice among the possible solutions may not give a desirable

approximation.



Chapter VIII

APPLICATIONS AND ANATYSES OF METHODS OF THE

GALERKIN TYPE AVAITLABLE IN THE LITERATURE

This chapter consists of a rather complete representative cross
section of references to the methods under consideration. Following
each reference is a remark to indicate how the article uses a method.
Some insight into typical spplications, frequence of use and care in

application can be gained from these references.

The list does not include many of the very brief references to
one or more of the various methods. A reference is included only in
case there is a fairly complete discussion of a method or a nontrivial
application. Inclusion of a reference is not an endorsement of the ap-
plication. Convergence proofs or justification for use almost never

occur.

The references are grouped by (A) Ordinary Differential Egua-
tions, (B) Partial Differential Equations and (C) Studies of Methods

per se.
A. Ordinary Differential Equations

1. Birikh, "On the spectrum of small perturbations of plane-parallel

Couette flow", (PMM) Journal of Applied Mathematics and

Mechanics, Vol. 29, 1965, 946-9k9,

9k
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Solves a fourth order ordinary differential equation subject

to homogeneous boundary conditions using the coordinate functions

2
cos A - a x
cosh ax n
vV =K -
n n| cosh a P
cos An - &

for even n and the samevfuntions with sinh and sin replacing
cosh and cos, respectively, for odd n. The same problem is

solved in [9] using different coordinate functions.

2. Bruslinskaja, "Limit cycles for equations of motion of a rigid body

and Galerkin equations for hydrodynamics", Soviet Mathematics,

Vol. 5, Aug. 196k, 1051-105k.
Solves a first order system of three equations with little

comment.

3. Chandraskhar, "Hydrodynamic and hydromagnetic stability", Clarendon

Press, Oxford, England.
Solves the system

2
(D2 - a2) u=(1L+ax)v

(D2 - a2) v = =2u

subject to u=Du=v =0 for x =0, 1 using as coordinate

functions Vn = sin nwx and un the solutions of
(D2 - a2) u = (1 + ax) sin nrx

u =Du_ =0 for x =0, 1
n n

and using sin nwrx as weight functions.
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L. DiPrima, "Applications of Galerkins method to a problem in hydro-

dynamic stability," Quarterly of Applied Mathematics, Vol. 13,

1, 1955, 55-62.

Solves a problem similar to that in [3] using ™ times a

polynomial as coordinate functions.

DiPrima, Walowit, Tsao, "Stability of flow between arbitrarily

5.

gspaced concentric cylindrical surfaces including the effect of

a radial temperature gradient," Journal of Applied Mechanics,

Vol. 31, 1964, 585-593.

Solves a 2 X 2 homogeneous system of ordinary differential
equations with homogeneous boundary conditions using

(X2 - )2 xn-l as coordinate functions for both unknowns.

Fle

Shows no work.

6. DiPrima, "Some variational principles for problems in hydrodynamic

and hydromagnetic stability", Quarterly of Applied Mathematics,
» ot i%

Vol. 18, 1961, 375-385.
Mentions the application of the Galerkin method to a problem

similar to [3]. He uses cosines as one set of coordinate func-

tions and those of [10] for the other.

7. Duncan, "Torsional oscillation of a cantilever when the stiffness
is of composite origin," TR Aero Research Commission, Great
Britian Air Ministry, Part 1, 1937, 1809, L471-L483.

Solves a second order ordinary differential equation with

homogeneous boundary conditions using polynomials as coordinate

functions.
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8. Frazer, Jones and Shan, "Approximation to functions and the solution
of differential equations", TR Aereo Research Commission, Great
Britian Air Ministry, Vol. 1, 1937, 1799, 517-5L9.
éolves ordinary differential equations of order less than

four using certain polynomials as coordinate functions.

9. Gallagher and Mercer, "On the behavior of small disturbances in

plane couette flow", Journal of Fluid Mechanics, Vol. 13, 1962,
91-100.
' Solves a fourth order equation with homogeneous boundary

conditions using coordinate functions similar to those in [10].

10. Harris and Reid, "On orthogonal functions which satisfy four boundary

conditions — Tables", Astrophysical Journal Supplement, Vol. 3,

1958, L2g-Ls2.
An orthogonal sequence of functions is presented which

satisfy

y(S) = ay, y = yl Oat x =4 0.5

cosh A x cosS A X
C(X): m _ m
m cosh = cos =
Exxn 2 Am
sinh X sin X
Mo Mo

S (X) =3 =T =T
sinh = 8 =
m 2H momu,

where Am_ and p, are the positive roots of

i
(@]

tanh L\ + tan A

It
(@)

coth $s - cot Su
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11. Krueger and DiPrima, "The stability of a viscous fluid between ro-

tating cylinders with axial flow", Journal of Fluid Mechanics,

- Vol. 19, 1964, 528-538.
Solves a complex eigenvalue problem for a 2 x 2 system using

Galerkins method with the coordinate functions of [10].

12. Kurzweg, "Magnetohydrodynamic stability of curved viscous flows",
TRII-29, Princetoh University, Department of Physics, 1961.
Applies the Galerkin method to three simultaneous fourth or-
der linear ordinary differential equations with homogeneous

boundary conditions using polynomial coordinate functions.

13. Penzes and Burgin, "Free vibrations of thin isotropic oblate-
spheroidal shells", General Dynamics/Convair, San Diego, Calif.
Solves a second order homogeneous’ordinary linear differen-
tial equation with variable coefficients using associated
Legerdre functions with the Galerkin method where the con-

straints are that the solution be single valued and bounded.

14. Rao, "The fundamental flexural vibrations of a cantilever beam of

rectangular cross section with uniform taper", Aeronautical

Quarterly, May 1965, Vol. 16, 139-1uk.
Applies Galerkin method to a fourth order ordinary equation

with homogeneous boundary conditions,

15. Sastry, "Influence of wall conductance on the stability of Hartmann

flow in a curved channel", Physical Society of Japan Journal,

Vol. 21, 6, June 1966.
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Applies Galerkin method to an eigenvalue problem involving

a fourth order differential equation.

16. Sennet and Wait, "Analog computer analysis of static beams", AICE,

Engineering Mechanics Division Journal, Vol. 91, April (I)

1965, L7-62.
Compares a Galerkin solution to an analog computer solution
of a fourth order equation and finds the Galerkin solution with-

in 3% of the other.

17. Smith, "On the growth of Taylor-Garther vortices along highly con-

cave walls", Quarterly of Applied Mathematics, Vol. 13, 1955,

233-262.

Applies Galerkin method to two simultaneous ordinary dif-
ferential equations, one of third order and one of fourth, with
homogeneous boundary conditions using e times polynomials as

coordinate functions.
B. Partial Differential Equations

18. Bickley, "Experiments in approximating solutions of a partial dif-

ferential equation", Philosophical Magazine, (7) 32, 1941, 50-56.

Solves the one dimensional wave equation with certain bound-
ary and initial conditions using his modification of the Galerkin
method, collocation and least squares obtaining one and two term

approximations.
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19. Biezeno, Grammil, Blackie, "Theory of Elasticity", Engineering
Dynamics, Vol. 1, 170-176.
Applies Galerkin method to th.= f with homogeneous side

conditions.

20. Bolotin, "Nonconservative Problems of the Theory of Elastic Sta-

bility", 1963, pp. 58-62, 108-109, 207-212, 247-265.

Makes several applications of the Galerkin method.

21. Cheng and Pan, "Stability analysis of gas lubricated, self-acting,
plain, cylindrical journal bearings of finite length using

Galerkins method", Journal of Basic Engineering, Vol. 87, 1965,

185-191.
Applies Galerkin method to a second order equation with
homogeneous boundary conditions using cosines as coordinate

functions.

22. Crandall, Engineering Analysis, McGraw-Hill, 1956, pp. 149, 233, 372.

Gives example to illustrate the method described herein on

page 25.

23. Duncan, "Applications of the Galerkin method to the torsion and

flexure of cylinders and prisims", Philosophical Magazine,

Series 7, Vol. 25, 1938, pp. 634-649.
Applies Galerkin method to several examples of Poissons

equation with polynomials as coordinate functions.
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2l. Finlayson and Scriven, "The method of weighted residuals and its
relation to certain variational principles for the analysis

of transport processes”, Chemical Engineering Sciences, Vol. 20,

1965, pp. 305-404.
Discusses the method of weighted residuals and works a few

examples.

25. Kaplan, "Some new methods of flux synthesis", Nuclear Science and

Engineering, Vol. 13, 1962, pp. 22-31.
Applies Galerkin and related mefthods to diffusion equations
subject to continuous flux and current and homogeneous boundary

conditions.

26. Karnagnti, "The critical Reynold's number for the flow past a

sphere", Journal of the Physical Society of Japan, Vol. 10,

1955, pp. 694-699.

Uses method of weighted residuals to solve nonlinear fourth
order partial differential equation with nonhomogeneous boundary
conditions using sines as coordinate functions and Legendre func-

tions as weight functions.

27. Nemat-Nasser, Prasad, Henmann, 'Destabalizing effect of velocity
dependent forces in nonconservative continuous systems”,‘éléé
Journal, Vol. 4, 7, July 1966, pp. 1276-1280.
Compares an exact solution ofva fourth oraer partial differ-

ential equation to a two term Galerkin approximation.



102

28. Snyder and Stewart, "Velocity and pressure profiles for newtonian

creeping flow in regular packed beds of spheres”, AICLE Journal,

Vol. 12, 1966, pp. 167-173.
Applies Galerkin method to a homogeneous system of linear
partial differential equations with nonhomogeneous boundary

conditions using sines and cosines as coordinate functions.

29. Snyder, Spriggs and Stewart, "Solutions of the equations of change

by Galerkins method", AICLE Journal, 10, 1964, pp. 535-539.

Has discussion of methods in general with no proof of his
recommendations. Uses Galerkin method on nonlinear partial
differential equation example with known solution to conclude

results are good.

30. Toos, '"The Galerkin's vector for the dynamic problems of an elastic

isotropic and nonhomogeneous body", Revue Romaine de Mathe-

matique Pures et Appliques, Vol. 10, 6, pp. 855-861.

Applies the Galerkin method to a fourth order linear non~-

homogeneous partial differential equation.
C. Method Studies

31. Ames, "Nonlinear partial differential equations in engineering",

Mathematics in Science and Engineering, Vol. 18, Academic Press,

1965, pp. 243-270.

Discusses several variations of the method of weighted re-

siduals. Covered herein on page 2L,
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32. Bellman and Richardson, "Linearization based on differential approx-

imation and Galerkins method", Quarterly of Applied Mathematics,

Vol. 2L, April 1966.
Uses a one term approximation to help in gaining informa-
tion to approximate a nonlinear equation in a very brief ex-

ample.

33. Cesari, 'Functional analysis and Galerkins method", Michigan

Mathematical Journal, Vol. 11, 1964, pp. 385-k41kL.

See page 90 of this report.

34. Crandall, Engineering Analysis, McGraw-Hill, 1956.
Discusses Galerkin method and applies to very simple ex-

amples.

35. Duncan, "The principles of the Galerkin method", TR Aeronautical
Research Commission, Great Britian Air Ministry, Vol. 2, 1848,
1938, pp. 589-612.
Applies the Galerkin method to several problems quite

similar to [7].

36. Finlayson and Scriven, "The method of weighted residuals - a review",

Applied Mechanics Reviews, Vol. 19, 9, Sept. 1966, pp. T735-T47.

Outlines the relation between Galerkins method and varia-

tional methods.

37. ZKantorivich and Krylov, Approximate Methods of Higher Analysis,

Wiley and Sons, 1964, pp. 258-30k.
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Gives good discussion of several approximate methods and

solves several examples.

38. Mikhlin, Variational Methods in Mathematical Physics, Pergamon

Press, 196kL.
Discusses Galerkin methods and proves several convergence

theorems stated herein.

39. Milne, Numerical Solution of Differential FEquations, Wiley and Sons,

1953, pp. 114-116.
Describes the Galerkin method for nonhomogeneous boundary

conditions.

4O, Reiss, "Variational and related methods", bound as supplement to

Problems of Mathematical Physics by Lebeder, Prentice Hall,

1965, pp. L4ok-LOT7.
Explains several variations of the Galerkin method with

suggestions but offers no proof. See Chapter III.

41. Shulesko, "A new method of solving boundary value problems of mathe-

matical physics", Australian Journal of Applied Science, Vol. 10,

1959, pp. 1-7.

For a discussion of his suggesﬁion see page 23.

42. Urabe, "Galerkins procedure for nonlinear periodic systems", Archive

for Rational Mechanics and Analysis, Vol. 20, 1965, pp. 120-152.

See page 90 of this report.
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50.
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Urabe and Reiter, "Numerical computation of nonlinear forced oscil-

lations by Galerkins procedure” > Journal of Mathematical Analysis

and Applications, Vol. 1k, 1966, pp. 107-140.

See page 91 of this report.

Urabe, "Periodic solutions of differential systems, Galerkins pro-

cedure and the method of averaging", Journal of Differential
Equations, Vol. 2, 1966, pp. 265-280.

See page 91 of this report.

Babuska, Numerical Processes in Differential Eguations, (New York::

Interscience Publishers, 1966).

Galerkin, "Rods and plates. Series occuring in various questions
concerning the elastic equilibrium of rods and plates," Engineers

Bulletin (Vestnik inzhenerov) 19, 1915, 897-908.

Green, "An Expansion Method for Parabolic Partial Differential

Equations,” Journal of Research of the National Bureau of

Standards, LI (September 1953), 127-132.

Hildebrand, Methods of Applied Mathematics. (Englewood Cliffs:

Prentice Hall, 1952), p. 286.

Kantorovich, Functional Analysis in Normed Spaces, (Wew York: The

+

MacMillan Co., 196L).

Locker, "An existence analysis for nonlinear equations in Hilbert

space”, Transactions of the American Mathematical Society, Vol.

128, 3, Sept. 1967, pp. 403-L413.
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52.

53.

5k.

55.
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Milhlin, "Some sufficient conditions for the convergence of
Galerkin's method," Uch. zap. Len. gos. un-ta, 135, ser. matem.

nauk, 21, 1950. (restated in [38])

Petrov, "Application of Galerkin's method to the problem of stability
of the flow of a viscous liquid", PMM (Applied Mathematics and

Mechanics), Vol. 4, 1940, 3-12.

Petryshyn, "On the eigenvalue problem Tu - Su = 0 with unbounded

and nonsymmetric operators T and S," TID-4500, NYU, 1963.

Petryshyn, "Direct and iterative methods for the solution of linear
operator equations in Hilbert space," Trans. Amer. Math. Soc.,

Vol. 105, 1962, 136-175.

Repman, "A problem in the mathematical bases of Galerkin's method
for solving problems on the stability of elastic systems,"

PMM (Applied Mathematics and Mechanics) L, 1940.



